Rectification at Graphene-Semiconductor Interfaces: Zero-Gap Semiconductor-Based Diodes
نویسندگان
چکیده
S. Tongay, M. Lemaitre, X. Miao, B. Gila, B. R. Appleton, and A. F. Hebard Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA Department of Physics, University of Florida, Gainesville, Florida 32611, USA Nanoscience Institute for Medical and Engineering Technology, University of Florida, Gainesville, Florida 32611, USA (Received 24 May 2011; published 17 January 2012)
منابع مشابه
Rectification in Graphene Self-Switching Nanodiode Using Side Gates Doping
The electrical properties and rectification behavior of the graphene self-switching diodes by side gates doping with nitrogen and boron atoms were investigated using density functional tight-binding method. The devices gates doping changes the electrical conductivity of the side gates and the semiconductor channel nanoribbons. As a result, the threshold voltage value under the forward bias is s...
متن کاملAll-Graphene Planar Self-Switching MISFEDs, Metal-Insulator-Semiconductor Field-Effect Diodes
Graphene normally behaves as a semimetal because it lacks a bandgap, but when it is patterned into nanoribbons a bandgap can be introduced. By varying the width of these nanoribbons this band gap can be tuned from semiconducting to metallic. This property allows metallic and semiconducting regions within a single Graphene monolayer, which can be used in realising two-dimensional (2D) planar Met...
متن کاملNanoscale Diodes Without p-n Junctions
The p-n junction cannot be implemented at the nanoscale because the doping is very often a detrimental effect. The doping could change dramatically the properties of a nanomaterial such as graphene or single-walled carbon nanotubes. Therefore, we will present two graphene diodes without a p-n junction. The first is based on the dissimilar metals having workfunction below and above the graphene ...
متن کاملGraphene/GaN Schottky diodes: Stability at elevated temperatures
Rectification and thermal stability of diodes formed at graphene/GaN interfaces have been investigated using Raman Spectroscopy and temperature-dependent current-voltage measurements. The Schottky barriers formed between GaN and mechanically transferred graphene display rectification that is preserved up to 550 K with the diodes eventually becoming non-rectifying above 650 K. Upon cooling, the ...
متن کاملTuning Schottky diodes at the many-layer-graphene/semiconductor interface by doping
We report on the use of bromine intercalation of graphite to perform in situ tuning of the Schottky barrier height (SBH) formed at many-layer-graphene (MLG) semiconductor interfaces. The intercalation of Br into MLG simultaneously increases interlayer separation between the graphene planes, while at the same time giving rise to an increase (decrease) in the free hole carrier density (Fermi ener...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012